Casa dos Pombos

Um problema muito interesasnte envolvendo a casa dos pombos.

Temos 55 elementos do conjunto {1,2,3,….,100}, Prove que dois desses elementos terão como diferença +, outros dois 10, outro par 12, mas que não haverá, obrigatoriamente, dois cuja diferença seja 11.

_______________________________________________________________________________________________________________________-

Parte 1 : Começamos mostrando a diferença 11.

Vamos criar as casas, que nesse caso serão conjuntos bem definidos.

I – {1,12,23,….,100}

II – {2,13,24,…….,90}

III – {3,14,25,……,91}

..

XI – {11,22,33,……..,99}

Vamos contar quantos elementos há em cada casa, não sabe fazer isso?.. nem eu ^^ mas vamos tentar.

vemos que de 1 pra 12 variou 11 e de 12 pra 23 variou 11 tb, então podemos fazer por P.A

100 = 1 + (n – 1)11

99 = 11n – 11

110/11 = n

n = 10

I – 10 elementos

II – 9 elementos

III – 9 elementos

IV – 9 elementos.

..

XI – 9 elementos.

Fato é que, se pegarmos 2 elementos do mesmo grupo eles podem ou não deixar diferença 11, para deixar basta pegar o consecutivo, como não queremos isso então temos que pegar os não consecutivos.

Cada casa então contribuirá com 5 elementos, por exemplo:

casa II {2,13,…,90}  [ x ]  [  ] [ x ]  [  ]   [ x ]  [  ] [ x ]  [ ]  [ x ]

5 quadrados marcados com x, então de forma analoga pegamos dos demais.

Isso significa dizer que, se pegarmos 6 elementos de um grupo, obrigatoriamente terá diferença 11. Porém o exercicio pede para formarmos um grupo de 55 elementos, que NÃO deixem diferença 11, isso é possivel?

Claramente é, pois temos 11 casas, cada uma pode fornecer 5 elementos sem diferença 11 então 5 x 11 = 55, e finalizamos a primeira parte.

______________________________________________________________________________________________________________

Parte 2 : Diferença 9

Vamos fazer da mesma maneira agora para a diferença 9, porém queremos que seja qual for o grupo de 55 elementos, haverá diferença 9.

I – {1,10,19,………..,100}

II – {2,11,20,…….,92}

III – {3,12,21,…….,93}

..

IX – {9,18,…….,99}

Vamos contar quantos elementos temos em cada casa:

I – 12 elementos

II – 11 elementos

II- 11 elementos

..

IX – 11 elementos.

Vamos agora determinar quantos elementos podemos pegar para que não haja diferença 9, pra tanto devemos escolher os não consecutivos, vamos fazer apenas para o conjunto I os demais seram da mesma forma:

I – {1,10,………,100} [ x ]  [  ]   [ x ] [  ]  [ x ] [  ]  [ x ]  [  ]  [  x ] [  ]  [  x ]  [  ]

Temos 6 elementos, não consecutivos, que não deixam diferença 9, isso vai se repetir para os demais 8 grupos restantes.

Se de cada grupo podemos pegar 6 elementos sem dar diferença 9, o maior grupo que poderemos formar com isso será um grupo de 54 elementos. Porém o exercicio diz que o grupo terá que ter 55 elementos, então o próximo que pegarmos, seja ele de que grupo for, irá deixar diferença 9 com algum outro. c.q.d

____________________________________________________________________________________________________

Parte 3 : Diferença 10

Definindo as casas:

I- {1,11,21,………….,91}

II – {2,12,22,……..,92}

..

X – {10,20,30,……….,100}

Quantos elementos temos nas casas?

I -10 elementos..

II – 10 elementos

..

X – 10 elementos

Para não ter diferença 10, devemos pegar os não consecutivos, que serão definidos da seguinte maneira:

I – {1,11,21,…..,91} = [ x ]  [ ] [ x ] [ ] [ x ] [ ] [ x ] [ ] [ x ] [ ]

Podemos pegar 5 elementos de cada grupo que não deixaram diferença 10, então no geral podemos pegar 50 elementos que nenhum deles deixara diferença 10, porém nosso grupo é formado por 55 elementos, então os próximos 5 elementos escolhidos irá, obrigatoriamente, deixar diferença 10.

O caso diferença 12, fica para quem quiser tentar ^^

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: